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Abstract. Corrections to scaling in the g-state Potts model due to departures of the initial condition from
scaling morphology are studied at zero temperature in phase-ordering kinetics within Gaussian closure
approximation. When the corrections to scaling are included, the equal time correlation function has the
form G(r,t) = go(r/L)+ L™ “g1(r/L)+---, where L is the coarsening length scale. Both the correction-to-
scaling exponent w and the correction-to-scaling function gi(x) are calculated for different values of ¢q. The
correction-to-scaling exponent w is found to be nontrivial and depends on g. The corrections to scaling are
found to be large (relative to scaling function go(z) itself) at large scaling variable x.

PACS. 05.504+q Lattice theory and statistics (Ising, Potts, etc.) —05.70.Ln Nonequilibrium and irreversible
thermodynamics — 82.20.-w Chemical kinetics and dynamics

1 Introduction

There has been some considerable interest in phase order-
ing kinetics in the past few years [1]. When the system is
quenched from a high temperature (disordered) phase into
the two-phase or multi-phase regions, ordered phases grow
as functions of time t. At later times, it is well established
that when all length are scaled by the characteristic length
scale L(t) ~ t", the system becomes time-independent.
This means that quantities such as correlation function
G(r,t) = g(x), where x = r/L is the scaling variable. For
systems with short range correlations and two ordered
phases, the growth exponent n = 1/2 for nonconserved
(model A) dynamics, while n = 1/3 for locally conserved
(model B) dynamics [1].

Apart from noncoserved and locally conserved dynam-
ics, there has been some analytical, numerical and simula-
tion studies [2-4] when the ordering of a system is subject
to globally conserved dynamics. The dynamics of the or-
der parameter in this case are the same as the model A
dynamics subject to global conservation of the order pa-
rameter. It has been found that global conservation does
not change the growth exponent n = 1/2. However, the
autocorrelation function [5] and persistence exponent [6]
were found to depend on whether the order parameter is
globally conserved.

The phase ordering dynamics of a system which con-
sists of more than two ordered phases such as g-state Potts
model [7] have not been extensively studied [5]. It is well
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established that the growth exponent does not depend on
the value of g but on the dynamics of a system. This means
that n = 1/2 for the g¢-state Potts model undergoing
nonconserved (and globally conserved) dynamics [5,8,9],
while n = 1/3 for locally conserved dynamics [10]. It has
been observed by Sire and Majumdar (SM) [5] that the
evolution of ¢ = 2 Potts model is equivalent to the evolu-
tion of an Ising model evolving with fixed magnetisation
m = 2/q — 1. Other experimental realizations exist for
g =3, 4, co [7]. The limit ¢ — oo correctly describes the
coarsening phenomenon in metallic grains [9,11,12] and
dry soap froth [13].

Calculations on corrections to scaling due to nonscal-
ing initial condition for a number of models with both lo-
cally conserved and nonconserved dynamics have recently
been done[14]. These corrections enters correlation func-
tion G(r,t)) as follows. G(r,t) = go(r/L)+ L~ “gq1(r/L) +
-+, where g1 and w are correction-to-scaling function and
correction-to-scaling exponent respectively. Although, in
most of the models studied w was found to be trivial, for
approximate calculations on realistic models w was found
to be nontrivial, dependent on dimensionality d of the sys-
tem and the symmetry of the order parameter. The cor-
rections to scaling were found to be more at large values
of the scaling variable x.

This paper studies the corrections to scaling, asso-
ciated with deviations of the order parameter from the
scaling morphology in the initial state of the ¢-state Potts
model within the Gaussian closure approximation [15]. We
find that the correction-to-scaling exponent w depends on
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¢ while the correction-scaling function g1 (z) does not show
strong dependence on ¢. In this paper we work within the
thin domain wall limit [1] and for quenches to zero tem-
peratures [1,16,17]. This leads to simplifications as correc-
tions associated with domain wall thickness and thermal
fluctuations are not considered.

The paper is organised as follows. In Section 2, ¢-state
Potts model is discussed within field theory and Gaussian
closure approximation, and some general concepts are in-
troduced. Corrections to scaling are studied in Section 3.
Section 4 concludes with a summary and discussion.

2 Field theory and Gaussian closure
approximation

A “Gaussian closure” theory proposed by Mazenko [15]
has been applied to g-state model by SM [5]. In the ¢g-state
Potts model, the two-point correlation function is defined
as G(12) = 3L (¢u(r1,t1)¢i(r2,t2)). The angular brack-
ets denote the average over initial conditions while “12”
denotes the pair of space-time points (r1,t1) and (ra, ta).
Applying the symmetry of the order parameter field ¢(r, t)
and the translational invariance, the equal time correla-
tion function becomes,

G(T’, t) = Q<¢l(r17t)¢l(r2at)>v (1)

where r = |ro — r1|. The evolution equation for the equal
time correlation function for ¢-state Potts model quenched
to zero temperature is given by [5]

1 oG(r,t) o
3 = V<G(rt) —q

x (a(0,)[V'(¢u(r, 1)) — (A)]) . (2)

where V(¢) is the potential with ¢ degenerate minima and
A1 is the Lagrange’s multiplier enforcing the constraint
2ud=1

The order parameter field ¢(r,t) varies sharply across
the domain walls and as a result the evaluation of the
last term in equation (2) has not yet been realised with-
out approximations made. In order to evaluate the av-
erages in the last two terms of equation (2), SM ap-
plied the Gaussian closure approximation developed by
Mazenko [15]. Within the Gaussian closure approximation
a nonlinear transformation is made from ¢ to a smooth
varying auxiliary field m(r,t). The nonlinear transforma-
tion ¢(r,t) = o[m(r,t)] is given by

d*o n da do

dm?  dt dm
where a(t) accounts for moving frame [5] and is fixed by
the condition that average on both sides of equation (3)
must be the same. The assumption that the auxiliary field
m(r, t) has a Gaussian probability distribution enables the
evaluation of the last term on the righthand side of equa-
tion (2) giving

1 0G(r,t) 1 ,0G
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where f(r,t) = C(r,t)/Co(t), is the normalised equal time
correlation function of the auxiliary field m(r,t),

C(r,t) = ({m(r1,t) —m(t){m(rz, 1) —m(t)})  (5)

and

Co(t) = ({m(t) — m(t)}?). (6)
Note that f(0,¢t) =1 and f — 0 as r — oco. The relation
between f(r,t) and G(r,t) has been explicitly given [5]

G(f)=%/oooexp —(y+p %)

X erf[ ﬂy] dy, (7)

2

1—f

where p = erfc™'[2/q]. Note that G(0,t) = 1, and G —
1/qas f — 0.

3 Corrections to scaling
3.1 The case q = 2

When ¢ = 2 the last term in equation (4) can be easily
expressed in terms of the correlation function G(r,t) only.
For ¢ = 2, the correlation function G(r,t) simplifies to

G(f) = %arctan < %) (8)

The linear transformation W(r,t) = 2G(r,t) — 1 leads
to the following boundary conditions: Both W and G —
1as f — 1, while for f — 0, W — 0 and G — 1/2.
Since 0 < f < 1, the linear transformation implies that
W(r,t) = 2/msin"! (f). Using equation(4), it is straight
forward to show that the evolution equation for W is given
by

1 0W(r,t)

s — VW (rt) + —— L tan (ZW(r,t)). (9)

CO (t) ™ 2

The above equation is similar to Mazenko result [15] and
the corrections to scaling in this case were obtained in our
previous work [14]. The results will be included in Table 1
for completeness.

3.2 The case when q > 2

For ¢ > 2, f(r,t) cannot be eliminated from equation (4)
in favor of G(r,t) and as a result we will work with f(r,t)
instead of G(r,t). From dimensional analysis Co(t) ~ L?
and is chosen [5] as Co(t) = L?/u, where yu is a constant
to be determined by physical arguments [15]. Expressing
equation (4) in terms of f(r,t) leads to

2 2
107 G (W), 2

of of, d-19f
20t Gy \Or or?

a-- el
T 8r+L2f’ (10)
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where Gy = dG/df etc. Corrections to scaling can be im-
posed on f(r,t) since G(r,t) is a function of f(r,t). In
the scaling limit, G(r,t) approaches the scaling function
go(r/L) which is L-independent if all lengths are scaled by
L and L2 is constant as L ~ t'/2. Including corrections
to scaling due to nonscaling scaling initial condition in the
usual way [14] leads to

e ()

o
on)eren (e

dL 2 b n (11)
dt L ' L'tw ’
where
r
go (f) = G(f0)7

(12)

w () =1 () [9]

and b is a constant.
Using equations (11) in (10), and equating leading and
next-to-leading powers of L leads to

fo"" + Chto fo’®

G, +[ +d—} fo'+ufo=0 (13)

and

fi" + [x+ —1} S+ e+l fi

b , Gy ;o
Z 9 Zhofo
+2:Efo + G, fo f1

(Grogo)?
Gy’

+ [Gfofofo . (14)

/2
=0

G, ] J1 fo
The primes indicate derivatives with respect to the scaling
variable ¢ = r/L and Gy, = [dG/df] =y, , etc

Both equations (13) and (14) cannot be solved analyti-
cally. However, they can be integrated numerically subject
to the appropriate initial conditions imposed at x = 0. At
x =0, fo = 1. The initial conditions can be obtained by
letting fo — 1. In this limit

G(f)=~1 —p\/g 1- 2

from which Gy, etc, can easily be found. In the small-
x limit, the scaling and correction-to-scaling function are
given by

(15)

N
and " .

hi = g+ (17)
respectively.
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Table 1. The autocorrelation exponent A and the correction-
to-scaling exponent w for different values of ¢ in d = 2 and
d=3.

d=2 i=3
q A w A w
2 1.289 3.884 1.673  3.903
10 1.476  3.991 1.946  4.020
100 1.713  4.292 2.397  4.491
200 1.755  4.333 2.485 4.610
05 1 5% 7 5 6
X

Fig. 1. The scaling function go(z) in 2d. The boxed and broken
lines correspond to ¢ = 10 and ¢ = 200 respectively.

In the large-z limit fo — 0, while G — 1/¢ and
as a result equation (13) can be linearised as the sec-
ond term becomes negligible. There are two linearly in-
dependent solutions with asymptotic forms fo; ~ z7#
and foo ~ 2" Lexp(—2%/2) as z — oco. The amplitudes
of both solutions depends on p, in order to solve equa-
tion (13), p is chosen in such a way that the power law
solution is absent since the system has short range cor-
relations [5,15]. Note that p is related to autocorrelation
exponent A via A = d— /2. Values of A for different values
of q are given in Table 1. The values of A\ are in reasonable
agreement with simulations [5] and experiments [18].

For equation (14), there are two linearly independent
solutions in the large-z limit. One with a power-law tail

fir ~ @t (18)
and the other with a Gaussian tail
fia~a® exp(—302/2)7 (19)

where v = —d+w if w > 2 and v = p — d+ 2 otherwise.
The correction-to-scaling exponent w is determined by the
condition that the power-law decaying term is absent from
the large-x solution. Implementing this condition numer-
ically gives values of w for different values of ¢ in d = 2
and d = 3. The values of w are shown in Table 1.

Having determined the solutions of equation (13) and
equation (14), we use these results to find the scaling
function go(x) and the correction-to-scaling function ¢ (x)
from equations (7) and (12). Figure 1 shows scaling func-
tion go(x) while Figure 2 shows the correction-to-scaling
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Fig. 2. The correction-to-scaling function g¢;(z) in 2d. The
boxed and broken lines correspond to ¢ = 10 and ¢ = 200
respectively.

function g1 (z), in 2d for ¢ = 10 and 200. The scaling func-
tion go(z) shows strong dependence on ¢ especially in the
large-x limit, as go(x) — 1/q¢ in this limit. The correction-
to-scaling function g (x) shows no strong dependence on
q. The amplitude of ¢;(z) is fixed by the constant b in
equation (14). The value b = 2 was used in Figure 2.

Now we consider the case d — oo for ¢ = 2. Including
corrections to scaling in equation (9), we let

W(r,t) = ho (%>+L—‘”h1 (%>+
dL 2 b

@ LTt

(20)
where ho(x) is the scaling function and hq (z) is the correc-
tion to-scaling function. Note that the actual correlation
function G(r,t) is related to the function W(r,t) via the
relation

W(r,t) = 2G(r,t) — 1. (21)

Substituting equations (20) in (9) and retaining the lead-
ing and the next leading powers of L leads to

h’o’—i—(% —l—x) h’o—i—%tan(ghO):O (22)
hY + (% + ac) R, + u sec? (g ho) hy
+why + gachf) =0. (23)

For large-d, from equation (22) it is clear that p o d in

order to cancel the term dh(/x. Retaining only this term,
the exact solution (with initial condition h(0) = 1) is

ho(z) = % sin™! (exp[—2?/2]), (24)

with p = d. The condition that ho(x) ~ exp(—z2/2) for
large-z has also been used.
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The corrections to scaling can be found by large-
x analysis of equation (23). For large-z, the term
sec?(mho/2) — 1 and equation (23) reduces to the
correction-to-scaling equation

d—1 b
h + (—z +ac) Pyt phy+ wh + Sahy = 0.(25)

The solution to the above equation is given by

bat 22
h1($)2—2(4d+8) €xXp (_?)a
w=4. (26)

The above analysis shows that in the limit d — oo for
q =2; p =d and w = 4 while the scaling function

_ 14 2 gin~" (exp[—2?/2])

Go(®) ; Coen
and the correction-to-scaling function
b x?
= — —-— . 2
@) = Taars) &P ( 2 > (28)

However, it is not clear at present how the same analysis
employed above for d — oo can be extended to ¢ > 2. This
is due to the complicated dependence of the correlation
function G(r,t) on f and ¢ for g > 2.

4 Summary

Corrections to scaling due to nonscaling initial condi-
tion have been studied for ¢-state Potts model within
the Gaussian closure approximation. The correction-to-
scaling function g¢;(z) and the associated correction-to-
scaling exponent w, have been calculated for different val-
ues of ¢ in 2 and 3d. We have found that w, in general
is a nontrivial exponent, which depends on ¢ and d, and
increases as q increases. We have as yet been unable to
find w and g;(x) analytically in the limit of large ¢. This
remains an interesting open question, especially because
q — oo correctly describes the evolution of a dry soap
froth [13] and the growth of metallic grains [9,11,12]. The
analytical calculations in this limit would also help in de-
termining the limiting values of w (if any) as ¢ increases. It
is worth mentioning that analytical solution for the scal-
ing function go(z) has been realised by looking at the limit
go(x) — 1 [5], in this limit the correction-to-scaling func-
tion g1(x) vanishes.

The corrections to scaling are relatively small (com-
pared to the scaling function itself) at small-z. This im-
plies that when comparing simulation or experimental
data with theory, small-x region must be given more
weight as the corrections to scaling are small.
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