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Abstract. Corrections to scaling in the q-state Potts model due to departures of the initial condition from
scaling morphology are studied at zero temperature in phase-ordering kinetics within Gaussian closure
approximation. When the corrections to scaling are included, the equal time correlation function has the
form G(r, t) = g0(r/L)+L−ωg1(r/L)+ · · · , where L is the coarsening length scale. Both the correction-to-
scaling exponent ω and the correction-to-scaling function g1(x) are calculated for different values of q. The
correction-to-scaling exponent ω is found to be nontrivial and depends on q. The corrections to scaling are
found to be large (relative to scaling function g0(x) itself) at large scaling variable x.

PACS. 05.50+q Lattice theory and statistics (Ising, Potts, etc.) – 05.70.Ln Nonequilibrium and irreversible
thermodynamics – 82.20.-w Chemical kinetics and dynamics

1 Introduction

There has been some considerable interest in phase order-
ing kinetics in the past few years [1]. When the system is
quenched from a high temperature (disordered) phase into
the two-phase or multi-phase regions, ordered phases grow
as functions of time t. At later times, it is well established
that when all length are scaled by the characteristic length
scale L(t) ∼ tn, the system becomes time-independent.
This means that quantities such as correlation function
G(r, t) = g(x), where x = r/L is the scaling variable. For
systems with short range correlations and two ordered
phases, the growth exponent n = 1/2 for nonconserved
(model A) dynamics, while n = 1/3 for locally conserved
(model B) dynamics [1].

Apart from noncoserved and locally conserved dynam-
ics, there has been some analytical, numerical and simula-
tion studies [2–4] when the ordering of a system is subject
to globally conserved dynamics. The dynamics of the or-
der parameter in this case are the same as the model A
dynamics subject to global conservation of the order pa-
rameter. It has been found that global conservation does
not change the growth exponent n = 1/2. However, the
autocorrelation function [5] and persistence exponent [6]
were found to depend on whether the order parameter is
globally conserved.

The phase ordering dynamics of a system which con-
sists of more than two ordered phases such as q-state Potts
model [7] have not been extensively studied [5]. It is well
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established that the growth exponent does not depend on
the value of q but on the dynamics of a system. This means
that n = 1/2 for the q-state Potts model undergoing
nonconserved (and globally conserved) dynamics [5,8,9],
while n = 1/3 for locally conserved dynamics [10]. It has
been observed by Sire and Majumdar (SM) [5] that the
evolution of q = 2 Potts model is equivalent to the evolu-
tion of an Ising model evolving with fixed magnetisation
m = 2/q − 1. Other experimental realizations exist for
q = 3, 4, ∞ [7]. The limit q → ∞ correctly describes the
coarsening phenomenon in metallic grains [9,11,12] and
dry soap froth [13].

Calculations on corrections to scaling due to nonscal-
ing initial condition for a number of models with both lo-
cally conserved and nonconserved dynamics have recently
been done[14]. These corrections enters correlation func-
tion G(r, t)) as follows. G(r, t) = g0(r/L)+ L−ωg1(r/L)+
· · · , where g1 and ω are correction-to-scaling function and
correction-to-scaling exponent respectively. Although, in
most of the models studied ω was found to be trivial, for
approximate calculations on realistic models ω was found
to be nontrivial, dependent on dimensionality d of the sys-
tem and the symmetry of the order parameter. The cor-
rections to scaling were found to be more at large values
of the scaling variable x.

This paper studies the corrections to scaling, asso-
ciated with deviations of the order parameter from the
scaling morphology in the initial state of the q-state Potts
model within the Gaussian closure approximation [15]. We
find that the correction-to-scaling exponent ω depends on
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q while the correction-scaling function g1(x) does not show
strong dependence on q. In this paper we work within the
thin domain wall limit [1] and for quenches to zero tem-
peratures [1,16,17]. This leads to simplifications as correc-
tions associated with domain wall thickness and thermal
fluctuations are not considered.

The paper is organised as follows. In Section 2, q-state
Potts model is discussed within field theory and Gaussian
closure approximation, and some general concepts are in-
troduced. Corrections to scaling are studied in Section 3.
Section 4 concludes with a summary and discussion.

2 Field theory and Gaussian closure
approximation

A “Gaussian closure” theory proposed by Mazenko [15]
has been applied to q-state model by SM [5]. In the q-state
Potts model, the two-point correlation function is defined
as G(12) =

∑q
l=1〈φl(r1, t1)φl(r2, t2)〉. The angular brack-

ets denote the average over initial conditions while “12”
denotes the pair of space-time points (r1, t1) and (r2, t2).
Applying the symmetry of the order parameter field φ(r, t)
and the translational invariance, the equal time correla-
tion function becomes,

G(r, t) = q〈φl(r1, t)φl(r2, t)〉, (1)

where r = |r2 − r1|. The evolution equation for the equal
time correlation function for q-state Potts model quenched
to zero temperature is given by [5]

1
2

∂G(r, t)
∂t

= ∇2G(r, t) − q

× 〈φl(0, t)[V ′(φl(r, t)) − 〈λ1〉]〉 , (2)

where V (φ) is the potential with q degenerate minima and
λ1 is the Lagrange’s multiplier enforcing the constraint∑

l φl = 1.
The order parameter field φ(r, t) varies sharply across

the domain walls and as a result the evaluation of the
last term in equation (2) has not yet been realised with-
out approximations made. In order to evaluate the av-
erages in the last two terms of equation (2), SM ap-
plied the Gaussian closure approximation developed by
Mazenko [15]. Within the Gaussian closure approximation
a nonlinear transformation is made from φ to a smooth
varying auxiliary field m(r, t). The nonlinear transforma-
tion φ(r, t) = σ[m(r, t)] is given by

d2σ

dm2
+

da

dt

dσ

dm
= V ′(σ) − 〈λ1〉, (3)

where a(t) accounts for moving frame [5] and is fixed by
the condition that average on both sides of equation (3)
must be the same. The assumption that the auxiliary field
m(r, t) has a Gaussian probability distribution enables the
evaluation of the last term on the righthand side of equa-
tion (2) giving

1
2

∂G(r, t)
∂t

= ∇2G(r, t) +
1

C0(t)
f

∂G

∂f
, (4)

where f(r, t) = C(r, t)/C0(t), is the normalised equal time
correlation function of the auxiliary field m(r, t),

C(r, t) = 〈{m(r1, t) − m̄(t)}{m(r2, t) − m̄(t)}〉 (5)

and
C0(t) =

〈{m(t) − m̄(t)}2
〉
. (6)

Note that f(0, t) = 1 and f → 0 as r → ∞. The relation
between f(r, t) and G(r, t) has been explicitly given [5]

G(f) =
q√
π

∫ ∞

0

exp

[
−
(

y + p

√
2

1 + f

)2
]

× erf

[√
1 + f

1 − f
y

]
dy, (7)

where p = erfc−1[2/q]. Note that G(0, t) = 1, and G →
1/q as f → 0.

3 Corrections to scaling

3.1 The case q = 2

When q = 2 the last term in equation (4) can be easily
expressed in terms of the correlation function G(r, t) only.
For q = 2, the correlation function G(r, t) simplifies to

G(f) =
2
π

arctan

(√
1 + f

1 − f

)
. (8)

The linear transformation W (r, t) = 2G(r, t) − 1 leads
to the following boundary conditions: Both W and G →
1 as f → 1, while for f → 0, W → 0 and G → 1/2.
Since 0 ≤ f ≤ 1, the linear transformation implies that
W (r, t) = 2/π sin−1 (f). Using equation(4), it is straight
forward to show that the evolution equation for W is given
by

1
2

∂W (r, t)
∂t

= ∇2W (r, t) +
1

C0(t)
1
π

tan
(π

2
W (r, t)

)
. (9)

The above equation is similar to Mazenko result [15] and
the corrections to scaling in this case were obtained in our
previous work [14]. The results will be included in Table 1
for completeness.

3.2 The case when q > 2

For q > 2, f(r, t) cannot be eliminated from equation (4)
in favor of G(r, t) and as a result we will work with f(r, t)
instead of G(r, t). From dimensional analysis C0(t) ∼ L2

and is chosen [5] as C0(t) = L2/µ, where µ is a constant
to be determined by physical arguments [15]. Expressing
equation (4) in terms of f(r, t) leads to

1
2

∂f

∂t
=

Gff

Gf

(
∂f

∂r

)2

+
∂2f

∂r2
+

d − 1
r

∂f

∂r
+

µ

L2
f, (10)
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where Gf = dG/df etc. Corrections to scaling can be im-
posed on f(r, t) since G(r, t) is a function of f(r, t). In
the scaling limit, G(r, t) approaches the scaling function
g0(r/L) which is L-independent if all lengths are scaled by
L and L dL

dt is constant as L ∼ t1/2. Including corrections
to scaling due to nonscaling scaling initial condition in the
usual way [14] leads to

f(r, t) = f0

( r

L

)
+ L−ω f1

( r

L

)
+ · · · ,

G(r, t) = g0

( r

L

)
+ L−ω g1

( r

L

)
+ · · · ,

dL

dt
=

2
L

+
b

L1+ω
+ · · · , (11)

where

g0

( r

L

)
= G(f0),

g1

( r

L

)
= f1

( r

L

) [dG

df

]
f=f0

, (12)

and b is a constant.
Using equations (11) in (10), and equating leading and

next-to-leading powers of L leads to

f0
′′ +

Gf0f0

Gf0

f0
′2 +

[
x +

d − 1
x

]
f0

′ + µ f0 = 0 (13)

and

f1
′′ +

[
x +

d − 1
x

]
f1

′ + [µ + ω] f1

+
b

2
x f0

′ + 2
Gf0f0

Gf0

f0
′ f1

′

+
[
Gf0f0f0

Gf0

− (Gf0f0)2

Gf0
2

]
f1 f0

′2 = 0. (14)

The primes indicate derivatives with respect to the scaling
variable x = r/L and Gf0 = [dG/df ]f=f0 , etc.

Both equations (13) and (14) cannot be solved analyti-
cally. However, they can be integrated numerically subject
to the appropriate initial conditions imposed at x = 0. At
x = 0, f0 = 1. The initial conditions can be obtained by
letting f0 → 1. In this limit

G(f) ≈ 1 − p

√
2
π

(1 − f)1/2, (15)

from which Gf , etc, can easily be found. In the small-
x limit, the scaling and correction-to-scaling function are
given by

f0 = 1 − µ

2(d − 1)
x2 + · · · (16)

and
f1 =

µ

4(d2 − 1)
x4 + · · · (17)

respectively.

Table 1. The autocorrelation exponent λ and the correction-
to-scaling exponent ω for different values of q in d = 2 and
d = 3.

d = 2 d = 3

q λ ω λ ω
2 1.289 3.884 1.673 3.903
10 1.476 3.991 1.946 4.020
100 1.713 4.292 2.397 4.491
200 1.755 4.333 2.485 4.610
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Fig. 1. The scaling function g0(x) in 2d. The boxed and broken
lines correspond to q = 10 and q = 200 respectively.

In the large-x limit f0 → 0, while G → 1/q and
as a result equation (13) can be linearised as the sec-
ond term becomes negligible. There are two linearly in-
dependent solutions with asymptotic forms f01 ∼ x−µ

and f02 ∼ xµ−d exp(−x2/2) as x → ∞. The amplitudes
of both solutions depends on µ, in order to solve equa-
tion (13), µ is chosen in such a way that the power law
solution is absent since the system has short range cor-
relations [5,15]. Note that µ is related to autocorrelation
exponent λ via λ = d−µ/2. Values of λ for different values
of q are given in Table 1. The values of λ are in reasonable
agreement with simulations [5] and experiments [18].

For equation (14), there are two linearly independent
solutions in the large-x limit. One with a power-law tail

f11 ∼ x−(ω+µ) (18)

and the other with a Gaussian tail

f12 ∼ xv exp(−x2/2), (19)

where v = µ− d + ω if ω > 2 and v = µ− d + 2 otherwise.
The correction-to-scaling exponent ω is determined by the
condition that the power-law decaying term is absent from
the large-x solution. Implementing this condition numer-
ically gives values of ω for different values of q in d = 2
and d = 3. The values of ω are shown in Table 1.

Having determined the solutions of equation (13) and
equation (14), we use these results to find the scaling
function g0(x) and the correction-to-scaling function g1(x)
from equations (7) and (12). Figure 1 shows scaling func-
tion g0(x) while Figure 2 shows the correction-to-scaling
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Fig. 2. The correction-to-scaling function g1(x) in 2d. The
boxed and broken lines correspond to q = 10 and q = 200
respectively.

function g1(x), in 2d for q = 10 and 200. The scaling func-
tion g0(x) shows strong dependence on q especially in the
large-x limit, as g0(x) → 1/q in this limit. The correction-
to-scaling function g1(x) shows no strong dependence on
q. The amplitude of g1(x) is fixed by the constant b in
equation (14). The value b = 2 was used in Figure 2.

Now we consider the case d → ∞ for q = 2. Including
corrections to scaling in equation (9), we let

W (r, t) = h0

( r

L

)
+ L−ω h1

( r

L

)
+ · · · ,

dL

dt
=

2
L

+
b

L1+ω
+ · · · , (20)

where h0(x) is the scaling function and h1(x) is the correc-
tion to-scaling function. Note that the actual correlation
function G(r, t) is related to the function W (r, t) via the
relation

W (r, t) = 2G(r, t) − 1. (21)

Substituting equations (20) in (9) and retaining the lead-
ing and the next leading powers of Lω leads to

h′′
0 +

(
d − 1

x
+ x

)
h′

0 +
µ

2π
tan

(π

2
h0

)
= 0 (22)

h′′
1 +

(
d − 1

x
+ x

)
h′

1 + µ sec2
(π

2
h0

)
h1

+ω h1 +
b

2
xh′

0 = 0. (23)

For large-d, from equation (22) it is clear that µ ∝ d in
order to cancel the term dh′

0/x. Retaining only this term,
the exact solution (with initial condition h(0) = 1) is

h0(x) =
2
π

sin−1
(
exp[−x2/2]

)
, (24)

with µ = d. The condition that h0(x) ∼ exp(−x2/2) for
large-x has also been used.

The corrections to scaling can be found by large-
x analysis of equation (23). For large-x, the term
sec2(πh0/2) → 1 and equation (23) reduces to the
correction-to-scaling equation

h′′
1 +

(
d − 1

x
+ x

)
h′

1 + µ h1 + ω h1 +
b

2
xh′

0 = 0. (25)

The solution to the above equation is given by

h1(x) =
bx4

2(4d + 8)
exp

(
−x2

2

)
,

ω = 4. (26)

The above analysis shows that in the limit d → ∞ for
q = 2; µ = d and ω = 4 while the scaling function

G0(x) =
1 + 2

π sin−1
(
exp[−x2/2]

)
2

, (27)

and the correction-to-scaling function

G1(x) =
bx4

4(4d + 8)
exp

(
−x2

2

)
. (28)

However, it is not clear at present how the same analysis
employed above for d → ∞ can be extended to q > 2. This
is due to the complicated dependence of the correlation
function G(r, t) on f and q for q > 2.

4 Summary

Corrections to scaling due to nonscaling initial condi-
tion have been studied for q-state Potts model within
the Gaussian closure approximation. The correction-to-
scaling function g1(x) and the associated correction-to-
scaling exponent ω, have been calculated for different val-
ues of q in 2 and 3d. We have found that ω, in general
is a nontrivial exponent, which depends on q and d, and
increases as q increases. We have as yet been unable to
find ω and g1(x) analytically in the limit of large q. This
remains an interesting open question, especially because
q → ∞ correctly describes the evolution of a dry soap
froth [13] and the growth of metallic grains [9,11,12]. The
analytical calculations in this limit would also help in de-
termining the limiting values of ω (if any) as q increases. It
is worth mentioning that analytical solution for the scal-
ing function g0(x) has been realised by looking at the limit
g0(x) → 1 [5], in this limit the correction-to-scaling func-
tion g1(x) vanishes.

The corrections to scaling are relatively small (com-
pared to the scaling function itself) at small-x. This im-
plies that when comparing simulation or experimental
data with theory, small-x region must be given more
weight as the corrections to scaling are small.
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